Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells.

نویسندگان

  • Lixin Chen
  • Liwei Wang
  • Linyan Zhu
  • Sihai Nie
  • Jin Zhang
  • Ping Zhong
  • Bo Cai
  • Haibing Luo
  • Tim J C Jacob
چکیده

Patch-clamping and cell image analysis techniques were used to study the expression of the volume-activated Cl(-) current, I(Cl(vol)), and regulatory volume decrease (RVD) capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated a Cl(-) current with a linear conductance, negligible time-dependent inactivation, and a reversal potential close to the Cl(-) equilibrium potential. The sequence of anion permeability was I(-) > Br(-) > Cl(-) > gluconate. The Cl(-) channel blockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and ATP inhibited I(Cl(vol)). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by a double chemical-block (thymidine and hydroxyurea) technique. The expression of I(Cl(vol)) was cell cycle dependent, being high in G(1) phase, downregulated in S phase, but increasing again in M phase. Hypotonic solution activated RVD, which was cell cycle dependent and inhibited by the Cl(-) channel blockers NPPB, tamoxifen, and ATP. The expression of I(Cl(vol)) was closely correlated with the RVD capacity in the cell cycle, suggesting a functional relationship. Inhibition of I(Cl(vol)) by NPPB (100 microM) arrested cells in G(0)/G(1). The data also suggest that expression of I(Cl(vol)) and RVD capacity are actively modulated during the cell cycle. The volume-activated Cl(-) current associated with RVD may therefore play an important role during the cell cycle progress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cells.

The immunofluorescence approach, the confocal microscopy and the patch-clamp technique were used to investigate the expression of ClC-3 (one of the candidates of volume-activated chloride channels) and its relationships with the volume-activated chloride current and the capacity of regulatory volume decrease (RVD) in the cell cycle of nasopharyngeal carcinoma cells (CNE-2Z cells). The results i...

متن کامل

Functional expression of chloride channels and their roles in the cell cycle and cell proliferation in highly differentiated nasopharyngeal carcinoma cells

We previously demonstrated that the growth of the poorly differentiated nasopharyngeal carcinoma cells (CNE-2Z) was more dependent on the activities of volume-activated chloride channels than that of the normal nasopharyngeal epithelial cells (NP69-SV40T). However, the activities and roles of such volume-activated chloride channels in highly differentiated nasopharyngeal carcinoma cells (CNE-1)...

متن کامل

ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.

Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharynge...

متن کامل

ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells

It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 283 4  شماره 

صفحات  -

تاریخ انتشار 2002